Super-resolution land cover pattern prediction using a Hopfield neural network

نویسندگان

  • A. J. Tatem
  • H. G. Lewis
  • P. M. Atkinson
  • M. S. Nixon
چکیده

Landscape pattern represents a key variable in management and understanding of the environment, as well as driving many environmental models. Remote sensing can be used to provide information on the spatial pattern of land cover features, but analysis and classification of such imagery suffers from the problem of class mixing within pixels. Soft classification techniques can estimate the class composition of image pixels. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field-ofview (IFOV) represented by the pixel. Techniques to provide an improved spatial representation of land cover targets larger than the size of a pixel have been developed. However, the mapping of subpixel scale land cover features has yet to be investigated. We recently described the application of a Hopfield neural network technique to super-resolution mapping of land cover features larger than a pixel, using information of pixel composition determined from soft classification, and now show how our approach can be extended in a new way to predict the spatial pattern of subpixel scale features. The network converges to a minimum of an energy function defined as a goal and several constraints. Prior information on the typical spatial arrangement of the particular land cover types is incorporated into the energy function as a semivariance constraint. This produces a prediction of the spatial pattern of the land cover in question, at the subpixel scale. The technique is applied to synthetic and simulated Landsat Thematic Mapper (TM) imagery, and compared to results of an existing super-resolution target identification technique. Results show that the new approach represents a simple, robust, and efficient tool for super-resolution land cover pattern prediction from remotely sensed imagery. D 2002 Elsevier Science Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super-resolution mapping using Hopfield Neural Network with Panchromatic image

Super-resolution mapping or sub-pixel mapping is a set of techniques to produce the hard land cover map at sub-pixel spatial resolution from the land cover proportion images obtained by soft-classification methods. In addition to the information from the land cover proportion images at the original spatial resolution, supplementary information at the higher spatial resolution can be used to pro...

متن کامل

Ling, Feng and Foody, Giles M. and Ge, Yong and Li, Xiaodong and Du, Yun (2016) An iterative interpolation deconvolution algorithm for superresolution land cover

Super-resolution mapping (SRM) is a method to produce a fine spatial resolution land cover map from coarse spatial resolution remotely sensed imagery. A popular approach for SRM is a two-step algorithm, which first increases the spatial resolution of coarse fraction images by interpolation, and then determines class labels of fine resolution pixels using the maximum a posteriori (MAP) principle...

متن کامل

Super-resolution target identification from remotely sensed images using a Hopfield neural network

Fuzzy classification techniques have been developed recently to estimate the class composition of image pixels, but their output provides no indication of how these classes are distributed spatially within the instantaneous field of view represented by the pixel. As such, while the accuracy of land cover target identification has been improved using fuzzy classification, it remains for robust t...

متن کامل

Increasing the spatial resolution of agricultural land cover maps using a Hopfield neural network

Land cover class composition of remotely sensed image pixels can be estimated using soft classification techniques increasingly available in many GIS packages. However, their output provides no indication of how such classes are distributed spatially within the instantaneous field of view represented by the pixel. Techniques that attempt to provide an improved spatial representation of land cov...

متن کامل

A High Accuracy Land Use/cover Retrieval System

The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past forty years, most of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001